stan_glm
family: gaussian [identity]
formula: Edu_Exp ~ Urban_PopGrowth
observations: 1447
predictors: 2
------
Median MAD_SD
(Intercept) 448291202312.4 51608403832.4
Urban_PopGrowth -58004683565.4 19200689288.4
Auxiliary parameter(s):
Median MAD_SD
sigma 1.189343e+12 2.232049e+10
------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg
Model Analysis
Focus Question
How does a government’s expenditure on education impact rural and urban population growths?
Model Definitions
\[y_u = \beta_0 + \beta_1 x_{1,u} + \epsilon_u\]
with \(y_u = Urban\_PopGrowth\), \(x_1 = edu\_exp\), and \(\epsilon_i \sim N(0, \sigma^2)\).
\[y_r = \beta_0 + \beta_1 x_{1,r} + \epsilon_r\] with \(y_u = Rural\_PopGrowth\), \(x_1 = edu\_exp\), and \(\epsilon_r \sim N(0, \sigma^2)\).
stan_glm
family: gaussian [identity]
formula: Edu_Exp ~ Rural_PopGrowth
observations: 1447
predictors: 2
------
Median MAD_SD
(Intercept) 350811012141.7 32189558592.9
Rural_PopGrowth -81954546363.3 20138949606.7
Auxiliary parameter(s):
Median MAD_SD
sigma 1.186938e+12 2.274886e+10
------
* For help interpreting the printed output see ?print.stanreg
* For info on the priors used see ?prior_summary.stanreg